f Soal Limit Trigonometri dan Pembahasannya ~ Urwatun Wursqa

Rabu, 20 April 2016

Soal Limit Trigonometri dan Pembahasannya

Soal No. 1
Tentukan hasil dari soal limit berikut

Pembahasan
Cara pertama dengan rumus yang ada diatas, sehingga langsung didapatkan
 



atau dengan cara kedua yang lebih panjang, memakai turunan, 3x turunkan jadi 3 dan sin 4x turunkan jadi 4 cos 4x, kemudian ganti x dengan nol
 



Soal No. 2
Tentukan hasil dari soal limit berikut

Pembahasan
Seperti nomor 1
 



Soal No. 3
Tentukan hasil dari soal limit berikut

Pembahasan
Seperti nomor 1 juga
 


Soal No. 4
Tentukan nilai dari:

 

Pembahasan
Perhatikan rumus limit berikut:
 

 

Diperoleh
 

 

Soal No. 5
Tentukan hasil dari soal limit berikut

Pembahasan
Identitas trigonometri berikut diperlukan
 

 

Setelah diubah bentuknya gunakan rumus dasar di atas
 

Soal No. 6
Tentukan hasil dari soal limit berikut

Pembahasan
Ubah dulu 1 − cos 4x menjadi 2 sin
 2 2x. 

 

Soal No. 7
Tentukan hasil dari soal limit berikut

Pembahasan
Ubah dulu 1 − cos 6x menjadi 2 sin
 2 3x. 

 

Soal No. 8
Tentukan hasil dari soal limit berikut
A. 1/2
B. 1/3
C. 1/6
D. 1/12
E. 1/18
(umptn 2001)

Pembahasan
Tinggal di susun ulang, didapat hasil
 

 

Soal No. 9
Nilai
A. 4
B. 2
C. −1
D. −2
E. −4
(un 2012 A13 dan D49)

Pembahasan
Jika  1 − cos 4x menjadi  2 sin
 2 2x, tentunya   cos 4x − 1   menjadi   − 2 sin 2 2x, sehingga 

 

Soal No. 10
Nilai 
A. −2
B. −1
C. 0
D. 1
E. 2
(un 2012 B76)

Pembahasan
Ubah 1 − cos 2x menjadi 2 sin
 2 x

Soal No. 11
Nilai dari:

 

A. 2Ï€
B. π
C. 0
D.
 1/Ï€
E.
 1/2Ï€

Pembahasan
Misakan:
 
x − 2  = y

Soal No. 12
Nilai dari:
 

A. 0
B.
 1/2
C. √2
D.
 1/2 √2
E. 1

Pembahasan
Substitusi langsung akan menghasilkan bentuk 0/0, dengan strategi pemfaktoran,
Ingat bentuk:
a2 − b2 = (a − b)(a + b)

dimana a = sin 2x dan b = cos 2x, setelah difaktorkan coret yang sama, kemudian substitusikan nilai x yang diminta:
 

Soal No. 13
Tentukan nilai dari
 

Pembahasan
Substitusi langsung menghasilkan bentuk 0/0.
 
Ubah cos 2x menjadi bentuk lain yaitu cos2x − sin2x kemudian faktorkan dengan mengingat bentuk
a2 − b2 = (a − b)(a + b)

Setelah itu coret dengan bagian bawah, hingga diperoleh angka − 1.
 

Rumus untuk cos 2x  (dalam soal ini dipakai rumus yang pertama)
Sehingga:

Soal No. 14
Nilai dari
 

A. 6
 
B. 5
 
C. 4
 
D. 2
 
E. 0
 
(UN Matematika 2014 IPA)

Pembahasan
Faktorkan x2
 − 1 dengan mengingat bentuk a2 − b2 = (a − b)(a + b). Kemudian uraikan sin2 (x − 1) menjadi sin (x − 1) sin (x − 1) dan tan (2x − 2) menjadi tan 2(x − 1). Coret seperlunya.

0 komentar:

Posting Komentar